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Introduction

Empirical research in Software Engineering

e Research question(s) on a population of software artefacts of interest
e Different kinds of artefacts: source code, binaries, etc.

e Often not feasible to study the entire population

> Population >> Sample >> Data >> Information >

Focus on Mining Software Repository (MSR) studies

Inspired from : M. Vidoni. 2022. A systematic process for Mining Software Repositories: Results from a systematic literature review. Inf. Softw. Technol. 144, C (Apr 2022).
https://doi.org/10.1016/j.infsof.2021.106791 2




Introduction

Key properties for Mining Software Repository studies

e Reproducibility of dataset / sample extraction

Fingerprinting and Building Large Reproducible Datasets

Romain Lefeuvre
University of Rennes
France
romain lefeuvre@inria.fr

e Representativeness of studied sample

Houari Sahraoui
DIRO, Université de Montréal
Canada
sahraouh@iro.umontreal.ca

ABSTRACT

Obtaining a relevant dataset is central to conducting empirical stud-
ies in software engineering. However, in the context of mining
software repositories, the lack of appropriate tooling for large scale
mining tasks hinders the creation of new datasets. Moreover, limita-
tions related to data sources that change over time (e.g., code bases)
and the lack of documentation of extraction processes make it diffi-
cult to reproduce datasets over time. This threatens the quality and

" ity of empirical studies.

In this paper, we propose a tool-supported approach facilitat-
ing the creation of large tailored datasets while ensuring their
reproducibility. We leveraged all the sources feeding the Software

e Generalization of findings

Heritage append-only archive which are accessible through a uni-
fied programming interface to outline a reproducible and generic
extraction process. We propose a way to define a unique fingerprint
to characterize a dataset which, when provided to the extraction
process, ensures that the same dataset will be extracted.

We demonstrate the feasibility of our approach by implement-
ing a prototype. We show how it can help reduce the limitations
researchers face when creating or reproducing datasets.
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1 INTRODUCTION
Empirical research in software engineering has experienced signif-
icant growth over the past two decades [25]. In addition to the
important impact of dedicated scientific venues such as MSR!
and EMSE?, the proportion of papers applying empirical tech-
niques has increased significantly in all major software engineering
venues. Moreover, all the major conferences and journals in the
field now consider reprod to be a major factor
of the submitted research results with rigorous replication guide-
lines [7, 14, 20]. At the same time, much effort has been put into
providing benchmarks to facilitate the evaluation of research con-
tributions and their comparison to the current state of the art. The
corresponding datasets cover several application domains such as
Android apps [1] and/or target specific problems such as code re-
view [24]. In general, those datasets contain code elements and
other data derived from the code that characterizes the internal
properties of those elements in the form of metrics or abstract rep-
resentations. They can also contain data that characterizes external
properties of the code elements like, e.g., bug reports.

Generally speaking, empirical studies in software engineering




Introduction

Sample representativeness

e Well-documented concern across scientific fields[1], including software engineering [2]

e Defined as the extent to which “a sample’s properties of interest resemble those of the
target population”

e Dimension specific
e Representativeness can be supported with different arguments :

o Large and random sample
o Breadth of a sample
o  Similar distributions

[1] William Kruskal and Frederick Mosteller. 1979. Representative Sampling, II: Scientific Literature, Excluding Statistics. International Statistical Review / Revue Internationale de Statistique 47, 2 (1979), 111-127

[2] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: a critical review and guidelines. 27, 4 (2022), 94. doi:10.1007/s10664-021-10072-8 4



Introduction

Sampling strategies

Approach Capsule Description
Convenience Select items based on expediency
Purposive Select items most useful for study’s objective

Referral-chain

Respondent-driven
Whole frame
Simple random
Systematic random
Stratified

Quota

Cluser

Select items based on relationship to existing
items

Bias-mitigating variant of referral-chain
Select the entire sampling frame

Select items entirely by chance

Select every xth item from a random start
Select items from different groups randomly
but in equal proportion

Select items from different groups purposively
but in equal proportion

Select items in stages, where each stage is a
subset of the previous

Probabilistic and non probabilistic
techniques.

Argument of representativeness
dependent on sampling type

Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: a critical review and guidelines. Empirical Softw. Engg. 27, 4 (Jul 2022).
https://doi.org/10.1007/s10664-021-10072-8 5



Challenges

Challenge related to sampling approach design

Traditional 3-tiers framework

Software projects contains numerous
Population artefact types (code, documentation
issue reports, tests etc..) connected in
complex ways

Sampling requires multiple phases of
refinement and selection

The 3-tier framework is not adapted to represent sampling workflow




Challenges

Challenge related to sampling approach design

Traditional 3-tiers framework %> Software Heritage

Filter
Operator
Po pu lation latestCommitDate
> 2023-01-01
1
Filter Filter
Operator Operator
authorNb < 5 authorNb >=5
Y
Random Random
Operator Operator
Size 1 10 000 Size : 10 000

I

Sample
Size : 20 000

The 3-tier framework is not adapted to represent sampling workflow




Challenges

Challenge related to sampling approach design

e No formalism : Incomplete textual description of methodology

e Lack of probabilistic sampling
o only 8% of analysed study use random sampling [1]
o “Generalisability crisis” [1]

Need for a framework, to explicitly model multi-stage sampling strategies

[1] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: a critical review and guidelines. Empirical Softw. Engg. 27, 4 (Jul 2022).
https://doi.org/10.1007/s10664-021-10072-8
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Challenges

Challenge related to reasoning on the sampling strategies

e Representativeness of a sample needs to be discussed 770

e |n practice, study use vague descriptors like “real-world”,
“diverse,” or “representative,” but rarely provide supporting
evidence [1]

e Argument for representativity require quantitative argument
o “Large and random sample” = sample size / statistical test
o “Similar distribution” = comparison of key property
distributions Mean;l: | Ge;ue:;l. usually unjustified, acclaim for

data: The emperor’s new clothes. [2]

Modelling sampling workflow can support generalizability reasoning through
automated analysis.

[1] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: a critical review and guidelines. Empirical Softw. Engg. 27, 4 (Jul 2022).
https://doi.org/10.1007/s10664-021-10072-8

[2] Kruskal, W., & Mosteller, F. (1980). Representative sampling, IV: The history of the concept in statistics, 1895-1939.

International Statistical Review/Revue Internationale de Statistique, 169-195. 9
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Challenges

Two levels of generalisation

Active software Union of two random
i Software et :
Active Open herit repositories archived sample of :
source software eritage by Software e 10k repos with <5
Heritage contributors
e 10k repos with >=
contributors
Sampling workflow
aggg:gﬁ;aéf /’/— -, Statistical argumgmsh
. representativity . Loblo bl
Population < Sampling Frame <€----- Targeted Group < Sample
Practical Theorical l Analysis
Generalisation \ Generalisation
Findings on Reasonning Findings on targeted | Reasonning EraEe
population = Group = 9 P

10



Research Questions

Research Questions:

RQ1: Does a DSL combining basic sampling operators can model complex
sampling workflows in SE?

RQ2: To what extent does formally modeling sampling workflows support
representativeness reasoning?

11



RQ1: Does a DSL combining basic sampling operators can model complex sampling workflows in SE?

Modelling sampling workflow
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Formalize the
sampling workflow
with no ambiguity

Executable and
reproducible

Provide an
analysable
representation

Use a generic data
model
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RQ1: Does a DSL combining basic sampling operators can model complex sampling workflows in SE?

e N e W =

—_ e e e
w N = O

Java internal DSL

void main(){
//Selection of active repository : Filter by date
filterOperator(latestCommitDate.boolConstraint(
x->x>time (2023, 1, 1)))
//Stratified Sampling by author number
.chain(groupingOperator(
//First strata : projects with less than 5 authors
filterOperator(authorNb.boolConstraint(x -> x<5))
//Random sampling of 10k repo
.chain(randomSelectionOperator (10000)),
//Second strata : projects with 5 or more authors
filterOperator(authorNb.boolConstraint(x -> x>=5))
//Random sampling of 10k repo
.chain(randomSelectionOperator (10000)))
)
.input(swhLoader ("2024-05-16-history-hosting"))
.executeWorkflow();

Figure 3: Modelled workflow of our running example

e Java fluent API

Connector to SWH

13



RQ1: Does a DSL combining basic sampling operators can model complex sampling workflows in SE?

Evaluation of the expressivity of the DSL

void main() {

var url = Metadata.ofString("url");

var lang = Metadata.ofString("lang");

var id = Metadata.ofString("id");

var commitNb = Metadata.ofDouble("commitNb");

//Cluster Operator
groupingOperator (
filterOperator (commitNb
.boolConstraint(x -> x<100 )),
filterOperator (commitNb
.boolConstraint(x -> x>=100
8& x<1000 )),
filterOperator (commitNb
.boolConstraint(x -> x>=1000)))
.chain(randomSelectionOperator(2))
.input(jsonLoader("input. json",id,commitNb
,url,lang))
.output(jsonWritter("cluster.json"))
.execute();

Cluster Sampling

//Stratified Random Operator
groupingOperator(
filterOperator(commitNb
.boolConstraint(x -> x<100))
.chain(randomSelectionOperator(100)),
filterOperator (commitNb
.boolConstraint(x -> x>=100
&& x<1000))
.chain(randomSelectionOperator(100)),
filterOperator(commitNb
.boolConstraint(x-> x>=1000 ))
.chain(randomSelectionOperator(100)))
.input(jsonLoader("input. json",id, commitNb
,url lang))
.output(jsonWritter("stratified_random. json"))
.execute();

Stratified Random
Sampling

//Quota Operator
groupingOperator(
filterOperator(commitNb
.boolConstraint(x -> x<100))
.chain(manualSamplingOperator(1,10,54,76,38)),
filterOperator (commitNb
.boolConstraint(x -> x>=100
& x<1000))
.chain(manualSamplingOperator(6,8,14)),
filterOperator(commitNb
.boolConstraint(x -> x>=1000))
.chain(manualSamplingOperator(53,54,2,5)))
.input(jsonLoader("input. json",id,commitNb
,url lang))
.output(jsonWritter("quota. json"))
.execute();

Quota Sampling

Common multi-stage sampling approaches captured

14



RQ1: Does a DSL combining basic sampling operators can model complex sampling workflows in SE?

Evaluation of the expressivity of the DSL

Review of Mining Software Repository (MSR) 2023 and 2024 papers

. Does the Does it contain a
Sampling

Repository . methodology . sampling . discussion on . Sampling

sampling ? oxtraction methodolggy is represejnta‘Fiyity/ modelling
reproducible ? generalisability ?
\ /
. . 5
Else, skip Ambiguous stage [/ incomplete *
Objectives :

e Evaluate the expressivity of our DSL
e Evaluate the opportunity of sampling modelling in MSR community



RQ2: To what extent does formally modeling sampling workflows support representativeness reasoning?

Supporting representativeness : distribution analysis
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RQ2: To what extent does formally modeling sampling workflows support representativeness reasoning?

Supporting representativeness : distribution analysis

Automatic execution of statistical test :
e Chi-square test goodness of fit (category)
e Kolmogorov-Smirnov (continuous metadata)
o null hypothesis = same distribution
o (0.05 significance level)

p-value = 0.18
Filter Random
Operator SET #2 0perator SET #4
Filter authorNb < 5| Size : 222 715 10 000 Size : 10 000
INPUT SET Operator N SET #1 GreRipIig . - SAMPLE
r iter Rand A
Size:23601029 | latestCommitDate | Size : 289923 | OPSAO’ | o crator SET #3 PO SET #5 Size : 20 000
P Operator
> 2023-01-01 » >
authorNb >= p| Size : 67 208 10 000 Size : 10 000
p-value = 0.99

Null hypothesis accepted, same distribution
17



RQ2: To what extent does formally modeling sampling workflows support representativeness reasoning?

Supporting representativeness : random sample size

“Large and random sample” representativeness argument, based on statistical test

e Cochran’s formula (normality assumption)
e Yamane N

n=s———
1+N-e?

where:
n = sample size 39 8
N = input set size
e = margin of error Filter Random
oPerator SET #2 0perator SET #4
Filter authorNb < 5| Size : 222 715 10 000 Size : 10 000
INPUT SET Operator N SET #1 Grouping . . SAMPLE
) & (0] t iiter Random »
Size: 23601029 | latestCommitDate | Size:289923 | "o o' | operator SET #3 SET #5 Size : 20 000
P Operator
> 2023-01-01 » >
authorNb >= p| Size : 67 208 10 000 Size : 10 000

William G Cochran. 1977. Sampling Techniques. John Wiley & Sons, Nashville, TN.

Taro Yamane. 1973. Statistics: An introductory analysis. Harper & Row New York. 18



Work in progress

Work in progress
Graphical DSL
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= Detalls

No object selected
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https://docs.google.com/file/d/1gA3BPhBnAi_2rI1J16uI8PxKYPBMoJ0x/preview

Key points

e \We propose a Domain Specific Language to model Sampling workflow
e This DSL is executable, and support multiple data sources

e The formalisation support representativity reasoning
o  Explicit definition of sampling workflow
o Enable to perform analysis on the workflow and its execution

20



