





### Fingerprinting and Building Large Reproducible Datasets

#### ACM REP '23

#### **Romain Lefeuvre**

France

romain.lefeuvre@inria.fr

University of Rennes DIRC

DIRO, Université de Montréal Canada jessie.galasso-carbonnel@umontreal.ca

lessie

Galasso

Benoit Combemale

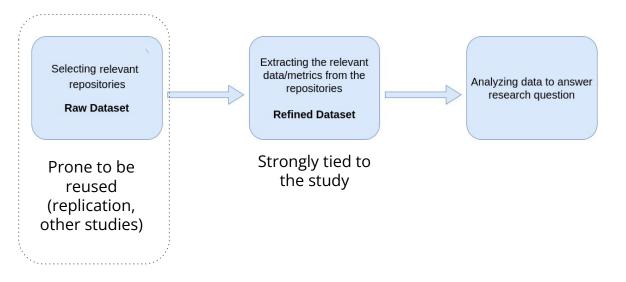
University of Rennes France benoit.combemale@irisa.fr Houari Sahraoui

DIRO, Université de Montréal Canada sahraouh@iro.umontreal.ca

#### Stefano Zacchiroli

LTCI, Télécom Paris, Institut Polytechnique de Paris France stefano.zacchiroli@telecom-paris.fr

1


## Reproducibility & empirical research in SE

- Growing interest for empirical research in Software Engineering
- Obtaining a relevant dataset is key
- All the major conferences consider reproducibility as an evaluation factor

Introduction Problem Software Heritage Fingerprint Approach Operationalization

Conclusion

# Big picture of a typical empirical study in SE



### Focus on dataset composed of source code from public repositories

## Limitations when **reusing** raw datasets

Impossible to ensure reproducibility of datasets that include links to resources changing over time

• Source code evolves over time

 $\rightarrow$  Provide timestamp/hash to retrieve the state of the repository?

• Projects can be deleted or the history can be rewritten

 $\rightarrow$  Hash is not enough , snapshot ?

### Limitations when reproducing an existing raw dataset

Sometimes it's necessary to reproduce the steps for selecting the repositories but it is often a complex process since:

- The selection process is not systematic and/or not clearly defined
- The data sources are **not reliable** and do not ensure reproducibility
- The API provided by traditional forges are **not adapted for large scale empirical studies**

Github Search API is not a reliable source of information

- The same query executed twice 3 Millions to 9 Millions results
- Search API restriction ( query must return less than 1k results ...)

GitHub Code Search Now Generally Available, 'Way More than grep' By David Ramel 05/09/2023

· A new code search engine rebuilt completely from scratch,

Operationalization

## Limitations when **creating** new Datasets

Forges do not provide appropriate tooling for large scale mining

Heterogeneous information sources with heterogeneous API





... At the end you will choose github

- Query Expressivity Limitation
- Rate Limitation
- Complex API

Problem

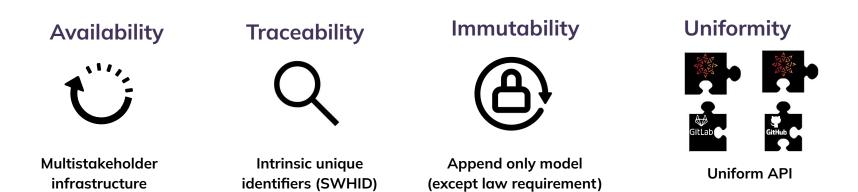
Software Heritage

**Fingerprint Approach** 

Operationalization

Conclusion

Software Heritage : Towards the universal software archive

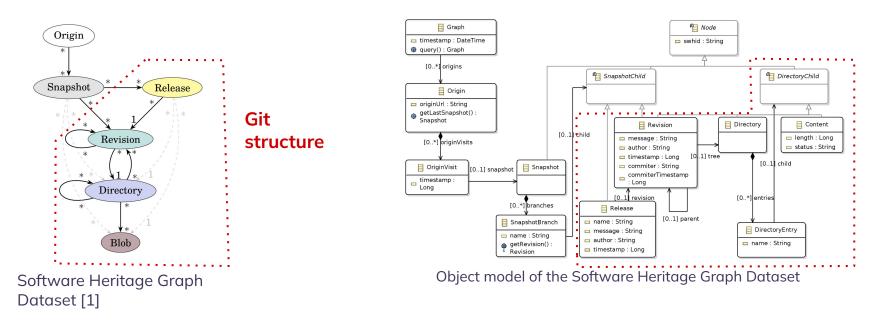



7

Operationalization

Conclusion

## Why to use Software Heritage for reproducibility ?

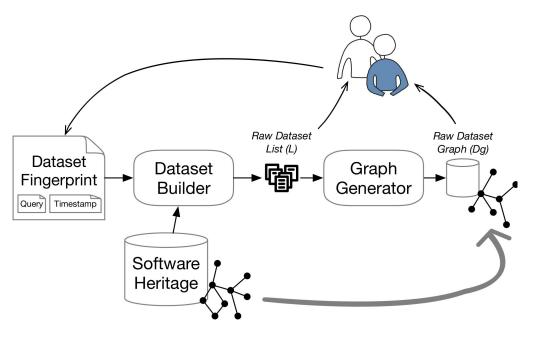



Operationalization

Conclusion

### How to use the Software Heritage Graph Dataset

#### An Open API allowing to query locally the entirety of the model




[1] Antoine Pietri. Organizing the graph of public software development for large-scale mining. Université Paris Cité, 2021.

Conclusion

# The fingerprint approach

- 1) A query on the data model of the source code
- 2) A timestamp to freeze the state of the archive
- 3) A hash to prevent any corruption



Problem

Software Heritage

Fingerprint Approach

Operationalization

Conclusion

### **Operationalizing our approach**

Fingerprint Query Specification



Object Constraint Language (OCL) Fingerprint Timestamp



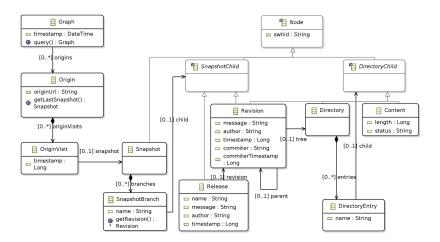
SWH Graph Dataset Timestamp Fingerprint Engine

Query compiler to SWH-Graph java API

Problem

Software Heritage

**Fingerprint Approach** 


Conclusion

### **Operationalization of our approach :**

Fingerprint Query Specification

Q

Object Constraint Language (OCL)



Object model of the SWH Graph Dataset

### Fingerprint query = constraint on the SWH Graph Dataset

Problem

Software Heritage

Fingerprint Approach

Operationalization

Conclusion

### **Operationalization of our approach:**

### Fingerprint Timestamp



SWH Graph Dataset - Export Timestamp

- Reproducibility ensured on the same export of the SWH Graph Dataset
- Theoretically possible to reconstruct previous states of the SWH Graph Dataset from a more recent export

### Fingerprint Timestamp = Frozen state of the SWH Graph Dataset

Problem

Software Heritage

Fingerprint Approach

Operationalization

Conclusion

### **Operationalization of our approach:**

Fingerprint Engine

Query compiler to SWH-Graph java API

- Compile OCL constraint on SWH-Graph to the Object-Oriented wrapper
- Return the list of repositories matched by the query
- Open the way to extract the returned sub graph

# Validation

- RQ1: What is the impact of the temporal dimension of the fingerprint on the extracted dataset?
- RQ2: Is the implemented selection process deterministic?
- RQ3: Is it possible to retrieve the same dataset when applying the fingerprint on different versions of the SWH archive?

## RQ1 : Impact of the temporal dimension

#### Variation on the temporal dimension has a huge impact on the number of results

| Forge                  | FP1(2018) | FP2(2021) | FP3(2022) |
|------------------------|-----------|-----------|-----------|
| github.com             | 830       | 135820    | 172012    |
| gitlab.com             | 3         | 67        | 1154      |
| bitbucket.org          | -         | 76        | 106       |
| codeberg.org           | -         | 55        | 84        |
| framagit.org           | -         | 21        | 23        |
| git.launchpad.net      | -         | 10        | 14        |
| anongit.kde.org        | -         | 2         | 3         |
| gitlab.gnome.org       | -         | 1         | 3         |
| git.zx2c4.com          | -         | 1         | 2         |
| repo.or.cz             | 2         | 1         | 1         |
| gitlab.freedesktop.org | -         | -         | 14        |
| 0xacab.org             | -         | -         | 3         |
| git.code.sf.net        |           |           | 3         |
| Total                  | 833       | 136054    | 173422    |

x200 between 2018 and 2022

+27 % between 2021 and 2022

increase in the number of supported forges & forge coverage

Number of repositories found when executing the same query with different timestamps (FP1=2018, FP2=2021, FP3=2022)

## RQ2: Determinism of the approach



Executing the same fingerprint over the same export returns the same result

## RQ3: Reproducing a dataset over time

| Forge         | FP3 X G3 | FP3 X G4 | Difference (%) |
|---------------|----------|----------|----------------|
| github.com    | 172012   | 166630   | -3.2           |
| gitlab.com    | 1154     | 1223     | 5.6            |
| bitbucket.org | 106      | 102      | -3.9           |
| codeberg.org  | 84       | 84       | 0.0            |
| framagit.org  | 23       | 22       | -4.5           |
|               | 43       | 38       | -13.2          |
| Total         | 173422   | 168099   | -3.2           |

Number of Repositories found when executing the same fingerprint over different versions of the graph



Almost possible to run a fingerprint having an older timestamp than the used graph

### Conclusion

- Approach to address reproducibility concerns when creating / reusing / reproducing raw dataset
- Fingerprint **characterizing a dataset** and ensuring to extract the same dataset over time
- Implemented prototype leveraging on SWH and OCL

## Perspectives



Hash integrity verification



Cover more OCL concepts



Create metrics/index in addition to filter







# Thank you for your attention !







## Image Credit

Flaticon.com