

Context aware analysis of software energy efficiency at application level Motivation and Opportunities

SEMTL 05/02/2024

<u>Romain</u> <u>Lefeuvre</u>

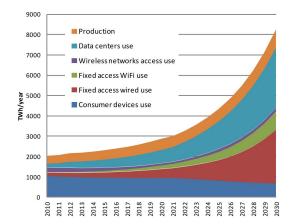
University of Rennes France romain.lefeuvre@inria.fr

Benoit Combemale

University of Rennes France benoit.combemale@irisa.fr

lessie Galasso

McGill Canada jessie.galasso-carbonnel@mcgill.ca Quentin Perez


INSA France quentin.perez@inria.fr

1

Context : ICT global electricity usage

ICT share on global electricity usage :

- 4% in 2020 [1]
- might represent **21%** in **2030** [2] (study expected scenario)

Trends for ICT "expected-case" global electricity usage 2010–2030.[2]

Energy efficiency: initially considered in terms of hardware and resource scheduling optimization

	2015	2022	Change
Internet users	3 billion	5.3 billion	+78%
Internet traffic	0.6 ZB	4.4 ZB	+600%
Data centre workloads	180 million	800 million	+340%
Data centre energy use (excluding crypto)	200 TWh	240-340 TWh	+20-70%
Crypto mining energy use	4 TWh	100-150 TWh	+2300-3500%
Data transmission network energy use	220 TWh	260-360 TWh	+18-64%

Global trends in digital and energy indicators, 2015-2022

Energy efficiency gain at **hardware** and **system level** partially counterbalance the growth.

Energy efficiency: initially considered in terms of hardware and resource scheduling optimization

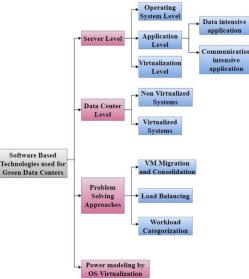
Global trends in digital and energy indicators, 2015-2022

	2015	2022	Change
Internet users	3 billion	5.3 billion	+78%
Internet traffic	0.6 ZB	4.4 ZB	+600%
Data centre workloads	180 million	800 million	+340%
Data centre energy use (excluding crypto)	200 TWh	240-340 TWh	+20-70%
Crypto mining energy use	4 TWh	100-150 TWh	+2300-3500%
Data transmission network energy use	220 TWh	260-360 TWh	+18-64%

Energy efficiency gain at **hardware** and **system level** partially counterbalance the growth.

Energy efficiency: initially considered in terms of hardware and resource scheduling optimization

How much does a VM cost? Energy-proportional Accounting in VM-based Environments


Save Watts in your Grid: Green Strategies for Energy-Aware Framework in Large Scale Distributed Systems

Estimating Energy Consumption of Cloud, Fog, and Edge Computing Infrastructures

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2022

Ehsan Ahvar[©], Anne-Cécile Orgerie[©], and Adrien Lebre[©]

Approaches at system level Application software as black box

Taxonomy of technique for energy efficiency in cloud computing [9]

Energy efficiency can also be analysed at application software level

277

[9] A. Katal, S. Dahiya, and T. Choudhury, "Energy efficiency in cloud computing data centers: a survey on software technologies," Cluster Comput, vol. 26, no. 3, pp. 1845–1875, Jun. 2023, doi: 10.1007/s10586-022-03713-0.

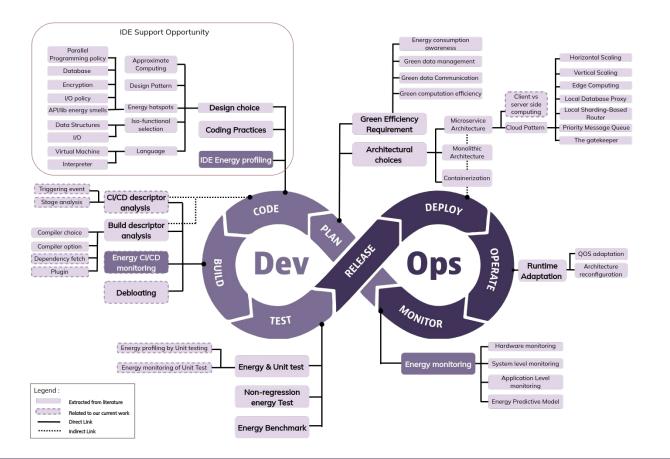
Energy efficiency at software application level

Initially studied for battery powered systems

- Cyber physical system
- Smartphone

A concern rising for SE in general

- Practitioners are willing to address energy issues [13]
- Lack of tools, approach, and methodology to apply [13]
- No global approach that can be applied systematically


Objective 1 : Characterizing factors of energy consumption at application level

Many studies on specific cases

- Energy aware application
- Energy design pattern
- Impact of java collections implementation
- Impact of configuration on energy consumption
- Impact of software good practices on energy consumption

No recent Systematic Literature Review No global taxonomy

Objective 1 : Characterizing factors of energy consumption Mapping energy efficiency studies and concerns to DevOps life cycle [TENTATIVE]

Energy efficiency as a **quality attribute**

That might be considered on every phase

Context capture and Variability point Energy analysis are highly context dependent

Mode Cause

Pos CPU-intensive tasks [29], [30], [31], [32]

Memory and caching [33], [34]

Tuning HW params [35], [36], [37]

Neg CPU-intensive tasks [38], [39]

Memory and caching [40], [41]

None Network comm. [42], [24], [43]

IO-intensive systems [38], [44]

Tuning CPU&HW params [41], [25]

Overview of the three modes of correlation and the corresponding cause [14]

Correlation between **performance** and **energy consumption**

- **Contradictory result** for same "modeled" context
- Context is not sufficiently captured
- Lots of variability points

Context capture and Variability point Energy analysis are highly context dependent

Mode Cause CPU-intensive tasks [29], [30], [31], [32] Pos Memory and caching [33], [34] Tuning HW params [35], [36], [37] CPU-intensive tasks [38], [39] Neg Memory and caching [40], [41] Network comm. [42], [24], [43] None IO-intensive systems [38], [44] Tuning CPU&HW params [41], [25]

Overview of the three modes of correlation and the corresponding cause [14]

Correlation between performance and energy consumption

- **Contradictory result** for same "modeled" context
- Context is not sufficiently captured
- Lots of variability points

Context capture and Variability point Energy analysis are highly context dependent

Mode Cause Pos CPU-intensive tasks [29], [30], [31], [32] Memory and caching [33], [34] Tuning HW params [35], [36], [37] Neg CPU-intensive tasks [38], [39] Memory and caching [40], [41] Memory and caching [40], [41] None Network comm. [42], [24], [43]

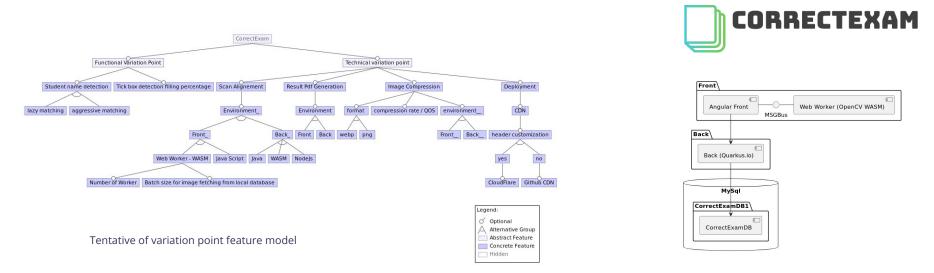
IO-intensive systems [38], [44]

Tuning CPU&HW params [41], [25]

Overview of the three modes of correlation and the corresponding cause [14]

Correlation between **performance** and **energy consumption**

- **Contradictory result** for same "modeled" context
- Context is not sufficiently captured
- Lots of variability points


Objective 2 : Context capture and variability points

• Identify the variability points in literature studies

• Identify the context and the variability points leading to non-generalization

• How can we describe / formalize the context ?

Objective 2 : Context capture and Variability point Variability modelling [Tentative]

Correct exam architecture

Create a feature model of correct exam variation point

Measure and evaluate variation point \rightarrow Ex : Server side vs Client side process

Objective 3 : Operationalization

Propose an approach that handles real world software and their context

"The many layers of abstraction in typical applications, combined with subtle interactions between both hardware and software components, suggests **that it is difficult, if not impossible**, for developers to predict how the changes they make will impact the energy consumption of their applications." Manotas et al. [15]

Energy efficiency approaches needs to be **contextualized**

One approach might be to perform **local optimization** to a **defined context**

[15] I. Manotas, L. Pollock, and J. Clause, "SEEDS: a software engineer's energy-optimization decision support framework," in ICSE 2014.

Thanks

Key points :

- **Objective 1 : Characterizing factors** of energy consumption at **application level**
- **Objective 2 : Context** capture and **variability** point identification
- **Objective 3**: Propose an approach that can be applied to real world software and their context
- Consider **energy efficiency** as a **quality attribute** handled within software lifecycle

Different scenarios depending on the study : other sector enablement and rebound effect

Assumptions about demand for ICT

÷		increases less than or in line with efficiency	increases more than efficiency
otions about iciency	continues	'Efficiency saves ICT' Emissions decline or stabilise e.g. Malmodin, Masanet	'Jevons Paradox' Emissions increase e.g. Hilty, Galvin, Magee
Assumleff	stops	'Jevons stalled' Emissions stabilise	'Growth without efficiency' Emissions increase rapidly e.g. Andrae, Belkhir

Rebound effect > 100% = Jevons Paradox

Resource savings are negative because usage increased beyond potential savings

Efficiency is needed to reduce emission

[5] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, "The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations,"