Measuring energy consumption
in the complex world of DevOps

Quentin Perez, Associate Professor at INSA Rennes
Romain Lefeuvre, Ph.D student at the University of Rennes

Information and Communication Technologies (ICTs)
CO2 Emissions

World energy consumption: 2,848 TWh in 2019 (IEA)
= +1.7% compared to 2018
= +44% compared to 2000

ICTs CO2 emissions: 1,8% to 3,9% of global CO2
emissions in 2020

The figures given here are taken from the publication by Freitag et al., “The real
climate and transformative impact of ICT: A critique of estimates, trends, and
requlations”, 2021 [Ereitag2021]

https://www.sciencedirect.com/science/article/pii/S2666389921001884

Information and Communication Technologies (ICTs)
CO2 Emissions

ICTs CO2 emissions: 1,8% to 3,9% of global CO2
emission in 2020 [Ereitag 2021]

CO2 emissions from aviation in 2018: 2,4%

[Lee et al., “The contribution of global avigtion to
anthropogenic climate forcing for 2000 to 2018”,
2018]

https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://www.sciencedirect.com/science/article/pii/S1352231020305689
https://www.sciencedirect.com/science/article/pii/S1352231020305689
https://www.sciencedirect.com/science/article/pii/S1352231020305689

Information and Communication Technologies (ICTs)
CO2 Emissions

ICTs CO2 emissions: 1,8% to 3,9% of global CO2
emission in 2020 [Ereitag2021]

CO2 emissions from aviation in 2018: 2,4%

[Lee et al., “The contribution of global avigtion to
anthropogenic climate forcing for 2000 to 2018”,
2018]

C02 emissions for ICTs are very hard to quantify
“precisely”

https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://www.sciencedirect.com/science/article/pii/S1352231020305689
https://www.sciencedirect.com/science/article/pii/S1352231020305689
https://www.sciencedirect.com/science/article/pii/S1352231020305689

Quantifying ICTs' CO2 Emissions

Software is continuously evolving

CO2 emissions for ICTs are very hard to

quantify “precisely”, especially for software Qo-.
|
® Scope: software, peripherals, users, networks, ol ds E
hardware workload, etc. & Analyais. o°¢,>)
&

. . End of life Maint
® Share of the material life cycle -
considered: manufacture, use, recycling,

reuse, etc. Installation
& Deployment

e Electrical mix

Lifecycle

' Integration
& Testing

e Share of software life cycle

Digital Service

Implementation
& Coding
[100010101

01<’DIO

010101110

Figure source - B namy & Boudinet, & Bou s, & L & Ninassi, & Vivat,. (2022). L'écoconception d'un service numérique : des actions pour réduire

l'impact el ‘ental du numérique. Bul I| I 1024 59 SB 1048556/S|F1024 19.59.

Quantifying ICTs' CO2 Emissions

CO2 emissions for ICTs are very hard to
quantify “precisely”, especially for software

o SCOpeI software, peripherals, users, networks,
hardware workload, etc.

® Share of the material life cycle

considered: manufacture, use, recycling,
reuse, etc.

X

e Electrical mix

Dev Ops
(

e Share of software life cycle

Iterative and incremental cycle
makes calculations more complex

Quantifying ICTs' CO2 Emissions

CO2 emissions for ICTs are very hard to .
quantify “precisely”, especially for software Design and Deployment and

, implementation operation
o SCOpeI software, peripherals, users, networks,

hardware workload, etc.

® Share of the material life cycle
considered: manufacture, use, recycling,
reuse, etc.

e Electrical mix

e Share of software life cycle

Iterative and incremental cycle

‘ Monitoring for
makes calculations more complex Build and test 9

feedback

An example of DevOps practice: CI/CD systems

Information and Communication Technologies 105_: —— all repositories
(ICT) = 1.8% to 3.9% of the greenhouse gases[1] § j — repositories with a CI
S 10% 5
Global acceleration of software development g 103_5
and delivery = continuous testing and %
deployment of software systems. [2] & 107 5
£ 101
Democratization of CI/CD pipelines with Gitlab 2 1
and GitHub services in clouds (Github Actions)= 1004
in 2022, 30% of the Github projects have a 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
pipeline of CI/CD [3]

[1] Freitag et al.,, “The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations”, 2021

[2] Jez Humble and Gene Kim. 2018. Accelerate: The science of lean software and devops: Building and scaling high performing technology organizations. IT
Revolution.

[3] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of Cl services in GitHub. In IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 662-672

Energy efficiency and CO2 emission

ICT share on global electricity usage :

70%
. 60%
- 4% in 2020 [1]
- might represent 21% in 2030 [2] .
30%
20%
L% l
0% I
L. . - Devices Networks Datacenters Enterprise networks
Energy eff|C|enCy IS hecessary, but it's mEmbodied GHG emissions (%) EUse stage GHG emissions (%)
only one of the requirements for
sustainable software. Total ICT sector carbon footprint 2020 [2]

Jevons paradox ...

[1]A. S. G. Andrae and T. Edler, “On Global Electricity Usage of Communication Technology: Trends to 2030,” Challenges, vol. 6, no. 1, Art. no. 1, Jun. 2015
[2] J. Malmodin, N. Lévehagen, P. Bergmark, and D. Lundén, “ICT Sector Electricity Consumption and Greenhouse Gas Emissions — 2020 Outcome.” Rochester, NY, Apr. 20, 2023. doi: 10.2139/ssrn.4424264.

Energy
efficiency
preoccupation
within DevOps
lifecycle

\\ Interpreter

Compiler choice

/

Parallel

Programming policy Approximate
Database el
Encryption Design Pattern ==
1/0 policy

APl/lib energy smells EEEEEEeS

Data Structures Iso—funqnonal 1
selection

IDE Support Opportunity

{l[e}

Virtual Machine

j— Language

—1— Design choice

Coding Practices —

IDE Energy profiling

Build descriptor *****
analysis

Compiler option

CI/CD descriptor

lessssssnnsssnns
— f

Energy profiling by Unit testing -

[
S s St e

Legend :

Extracted from literature
Related to our current work
Direct Link

Indirect Link

Energy Benchmark =

]— Energy & Unit test =]

Non-regression
energy Test

Energy consumption
awareness

Green data management
Green data Communication

Green computation efficiency

Green Efﬁc'en‘:y Microservice
Requirement Architecture
Architectural Monolithic

choices Archlt_ecture

Containerization

Ops

Energy monitoring

=mammam may
: Clientvs |, L
1 server side !

[\ computing : -
Cloud Pattern =—t=

Runtime
Adaptation

Hardware monitoring

System level monitoring

Application Level
monitoring

Energy Predictive Model

Horizontal Scaling

Vertical Scaling
Edge Computing
Local Database Proxy

Local Sharding-Based
Router

Priority Message Queue

The gatekeeper

Architecture
reconfiguration

[QOS adaptation

10

Energy
efficiency
preoccupation
within DevOps
lifecycle

/ IDE Support Opportunity
Parallel
Programming policy Approximate
Database el
Encryption Design Pattern ==
1/0 policy

API/lib energy smells

Iso-functional =

Data Structures 5
selection

{l[e}

Energy hotspots —4—— Design choice =~ =

Coding Practices —

~

(Virtual Machine j— Language =~ =

\\ Interpreter

I IDE Energy profiling [

CI/CD descriptor

lessssssnnsssnns
— f

Build descriptor *****{""**

Compiler choice

Compiler option

Energy CI/CD

- Energy & Unit test =]

ST e
Energy profiling by Grﬁt‘te‘s{ir(g';]_
)
Legend :
Extracted from literature
Related to our current work
Direct Link
Indirect Link

Non-regression || _|
energy Test
Energy Benchmark =

Energy consumption
awareness

Green data management
Green data Communication

Green computation efficiency

Green Efﬁc'en‘:y Microservice
Requirement Architecture
Architectural Monolithic

choices Archlt_ecture

Containerization

Ops

=mammam may
: Clientvs
1 server side !

[\ computing :
Cloud Pattern =i

Hardware monitoring

~ Horizontal Scaling

- Vertical Scaling
- Edge Computing

- Local Database Proxy

| Local Sharding-Based
Router

|- Priority Message Queue

- The gatekeeper

QOS adaptation
Runtime J: Architecture

Adaptation

reconfiguration

System level monitoring

Application Level
monitoring

Energy Predictive Model

"

Two major ways of measuring energy: Hardware level

. Hardware Level

Two major ways of measuring energy: Software level

J@U la rgd%é A Code line / language programming

O Powe riAPN m Software Processes / VMs / Containers

KEPLER

m Machine: CPU/GPU/DRAM
Electrical socket
_ Group of electrical socket
_ Electrical Circuit

. Hardware Level . Software Level

perf

Power Profiling Software (PPS)

https://inria.hal.science/hal-04030223
“Tools returning the power profile of v2/document#table.caption.|

a program and that are based on
the Intel RAPL and/or Nvidia NVML
interface.”

An experimental comparison of software-based
power meters: focus on CPU and GPU

Mathilde Jay*f, Vladimir Ostapencof, Laurent Lefevref, Denis Trystram*, Anne-Cécile Orgerie!, Benjamin Fichel®
* Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
I ntel RAP L an d NVi d ia NVM L are {mathilde.jay,denis.trystram } @univ-grenoble-alpes.fr
T Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France - {laurent.lefevre,vladimir.ostapenco} @ens-lyon.fr
 Univ, of Rennes, Inria, CNRS, IRISA, Rennes, France - anne-cecile.orgerie @irisa.fr

interfaces providing by h ardWa re § OVHCloud, France - benjamin.fichel @ovhcloud.com
manufacturers on their chips to
measure the power at a t moment A Code line / language programming

m Software Processes / VMs / Containers

https://inria.hal.science/hal-04030223v2/document#table.caption.1
https://inria.hal.science/hal-04030223v2/document#table.caption.1

Power Profiling Software: an example of profile

85w

sow

T5W

70W

65w

60w

55W

50w

o Compilation an

aw unit tests (\ Quarkus Executable Build with Docker

35W Code checkout

oW and JDK
download /
25W .
20w M
15W
now

oW ———A—|
23:36:00 23:3b: 136:3(36: ; i W
== /github-action-runner == build-native-lkipD == build-native-Nnqll == build-na

tive-ewz'

8 /3000

Vs w= build-native-xPMyx == frosty beaver == global == great_p - pi-graf — pi-influxdb == pos pi go-exp - pi p pi

Consumption profile of maven.yml workflow from the CorrectExam project

https:/aithub.com/correctexam/corrigeExamBack/blob/deploy/agithub/workflows/maven.ymi

https://github.com/correctexam/corrigeExamBack/blob/deploy/.github/workflows/maven.yml

Why and where use a power profiler in the DevOps cycle?

Why? = Monitoring allows us to Design and Deployment and
identify where to focus our implementation operation

energy consumption efforts.

Build and test Monitoring for
feedback

Why and where use a power profiler in the DevOps cycle?

Why? = Monitoring allows us to Design and Deployment and

identify where to focus our imp|ementation operation
energy consumption efforts.

For a given program used by
millions of users, we prefer to
optimize its code rather than the
“build/test” stage, as the latter is
used more sporadically by a
smaller number of people

compared to the number of Build and test Monitoring for
USErs. feedback

Why and where use a power profiler in the DevOps cycle?

Why? = Monitoring allows us to Design and Deployment and

identify where to focus our imp|ementation operation
energy consumption efforts.

= The best energy is that
which is not spent!

Whenever possible, energy
consumption should be
considered at the design time

= requirements! Build and test Monitoring for
feedback

Why and where use a power profiler in the DevOps cycle?

The where depends Design and Deployment and

on the energy spend implementation operation 00
in the different phase
of the lifecycle.

There is a solution of
energy monitoring for
each phase

Build and test Monitoring for
feedback

S

KEPLER

Why and where use a power profiler in the DevOps cycle?

The where depends

on the energy spend
in the different phase
of the lifecycle.

There is a solution of
energy monitoring for
each phase

Development environment

Production environment

Joular

Design and
implementation

O

~ E
<

Build and test

Powe r‘A\P\\I‘

Deployment and

operation u.

"

Monitoring for
feedback

<

KEPLER

Comparison of Power Profiling Software

Lifecycle Design and Monitoring Build and test Monitoring
implementation Continuous

Delivery
Ease of use Fair Good Poor Good
Quality of Fair Good Good Good
documentation
Default sampling None - Code level 01Hz 1Hz 0.5 Hz
frequency power consumption
Virtualization False True (k8s, Docker, | True (Docker) True (k8s)
support VMs based on

QEMU)

M. Jay, V. Ostapenco, L. Lefevre, D. Trystram, A. -C. Orgerie and B. Fichel, "An experimental comparison of software-based power meters: focus on CPU and GPU," 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), Bangalore, India, 2023, pp. 106-118, doi: 10.1109/CCGrid57682.2023.00020.

Take Away

e Software programs are particular products due to
their immateriality

e Agile practices, and consequently DevOps, are
widely adopted.

e There is a need for quantifying and monitoring
before optimizing.

e \ariety of monitoring tools with different levels of
granularity and sampling rates is adapted to the
different phases.

