
Querying Software Heritage
 Challenges behind a query language

1

DIVERSE SEMINAR
12/12/2023

This presentation is based on my understanding of SWH APIs, it’s not an official presentation

2

Software Heritage in a nutshell

Preserving our heritage, enabling better software and better
science for all.

● Collect, preserve, and share all software source code

● Find and reference (SWHIDs) all software source code

● Enable analysis of all software source code

Collect Share Preserve

https://www.swhid.org/

3

A universal software archive, as a shared infrastructure

● One infrastructure for Cultural Heritage, Industry, Research, Public Administration

● Open, transparent, FLOSS, replicable

4

The largest archive ever built

Metadata : ~ 15TB Wall archive : almost 1 PB

The largest archive ever built

5

Discontinued hosting

On demand archival

Harvest and archive

6

Current rate: 10 origins are visited per second

Reference (25 billion SWHIDs)

SoftWare Hash Identifiers (swhid.org)

Intrisic, decentralised, cryptographically strong

7

● For empirical research in Software Engineering
○ Mining Software Repository community

● For building (reproducible) source code datasets
○ Benchmarks
○ Machine learning training dataset (LLM etc …).

● For building refined datasets ie. extending the SWH model with metrics of
interests
○ Adding extra metadata (labelization of vulnerable commits, code metrics, energy

consumption)
○ At different level: origin, snapshot, commit, file (… and why not AST node in the future ?)

8

Why are we interested in querying SWH ?

Forges do not provide appropriate tooling for large scale mining

9

Heterogeneous information sources with
heterogeneous API

… At the end you will choose github

● Query Expressivity Limitation

● Rate Limitation

● Complex API

10

Availability Traceability Immutability Uniformity

Intrinsic unique
identifiers (SWHID)

Append only model
(except law requirement)

Multistakeholder
infrastructure

Uniform API

Why using Software Heritage ?

REST GraphQL API for tiny requests

● Navigate through the archive, node by node

● Request the download of files / commit / snapshots

● Limited to 10k requests by hour

● Request the archive of repository

11

Internal API - SWH storage

12

- Can access to the entirety of the archive
(File etc …)

- Query/traversal are performed on the
production environment

- Backed by relational DB, non-adapted to
resources intensive graph traversal

Need a separation of concerns, archiving / searching

SWH - Search

● Independent
● Backed by elastic search

13

origin : plasma and language in [python] and visits >= 5

last_visit > 2021-01-01 or last_visit < 2020-01-01

visited = false and metadata : "kubernetes" or origin : "minikube"

keyword in ["orchestration", "kubectl"] and license in ["GPLv3+", "GPLv3"]

(origin : debian or visit_type = ["deb"]) and license in ["GPL-3"]

● Limited to origin search
● Accessible through web-api

Not suitable for graph traversal request

14

The property Graph Dataset

- Provide a fully independent service to access
graph metadata

- Compress the graph and perform request in its
compressed version

- Can be used through different API :
- JAVA, REST, web-rpc

- Provided as an external services

15

No API limitation in terms of expressivity

Software Heritage Graph
Dataset [1]

[1] Antoine Pietri. Organizing the graph of public software development for large-scale mining. Université Paris Cité, 2021.

Object model of the Software Heritage Graph Dataset

Git
structure

SWH graph in practice - JAVA API

16

Advantages

Constraints

● Expressivity : all queries can be designed
● Performant graph traversal
● Performant transitive closure

Steep learning
curve

Resource Intensive
500 GB - 1TB+ RAM

10TB of SSD

Self hostedParallelization

SWH graph in practice - gRPC API
Advantages

17

Constraints

● Ease of use
● Provide high performance graph traversal method

Ressource Intensive
500 GB - 1TB+ RAM

6TB of SSD

Self hosted

- returning node / edge properties
- performing BFS traversals

- finding shortest paths
- common ancestors

Less expressive
than Java API

SWH graph dataset - columnar export

18

Advantages

Constraints

Graph Traversal Ressource Intensive

Column
based model

Parallelization Queryable via
cloud provider

Ease of use Performant
property

access

Combining swh-graph + column based version

● Executing non optimized query on swh-graph can be costly

● 2-steps process, querying both SWH-graph and the column based
version

Example: Licence extraction (partial workflow)
19

Querying SWH is complicated

● Time consuming / difficult to learn
how to deploy + run a query on SWH-graph

● Even with time, resources are needed

● A query language is needed :
○ Easy to use
○ Hide complex query between

column based / compressed version

20

The fingerprint approach

21

1) A query on the data model of the
source code

2) A timestamp to freeze the state of
the archive

3) A hash to prevent any corruption

Operationalization of our approach :

22

Fingerprint
Query Specification

Object Constraint
Language (OCL)

Object model of the SWH Graph Dataset

Fingerprint query = constraint on the SWH Graph Dataset

Towards a graph query language

23

GQL examples

24

Given two arbitrary revisions, return the shortest path between them in the undirected graph if it
exists.[1]

Given an origin, return all the objects reachable from it, but not reachable from any other origin[1]

[1] Antoine Pietri. Organizing the graph of public software development for large-scale mining. Université Paris Cité, 2021.

Discussion

- Have you ever had the need to mine repositories? What were your
requirements? Did you succeed without any problems ?

- Do you have any ideas of research questions that involve searching for
information / mining SWH ?

- What would be the interesting properties of a query language? Any ideas
on a particular syntax?

25

26

Thanks

