

____ Querying Software Heritage ____

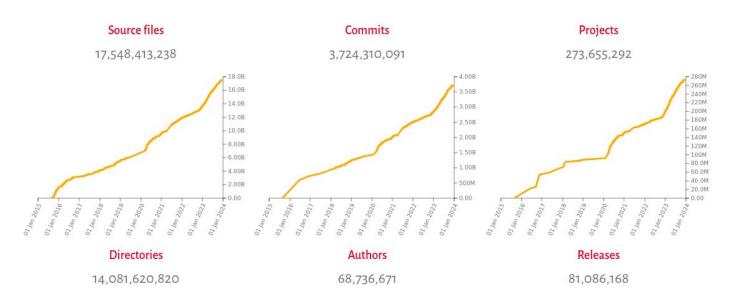
Challenges behind a query language

DIVERSE SEMINAR 12/12/2023

This presentation is based on my understanding of SWH APIs, it's not an official presentation

Software Heritage in a nutshell

Collect Share Preserve


- Collect, preserve, and share *all* software source code
- Find and reference (<u>SWHID</u>s) all software source code
- Enable analysis of all software source code

Preserving our heritage, enabling better software and better science for all.

A universal software archive, as a shared infrastructure

- One infrastructure for Cultural Heritage, Industry, Research, Public Administration
- Open, transparent, FLOSS, replicable

The largest archive ever built

Metadata : ~ 15TB

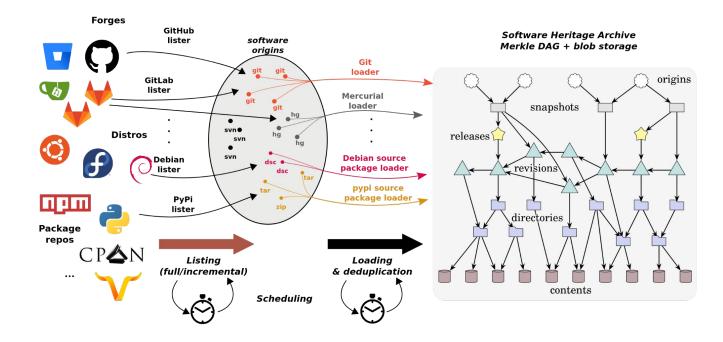
Wall archive : almost 1 PB

336,795 origins

<

The largest archive ever built

122,014 origins

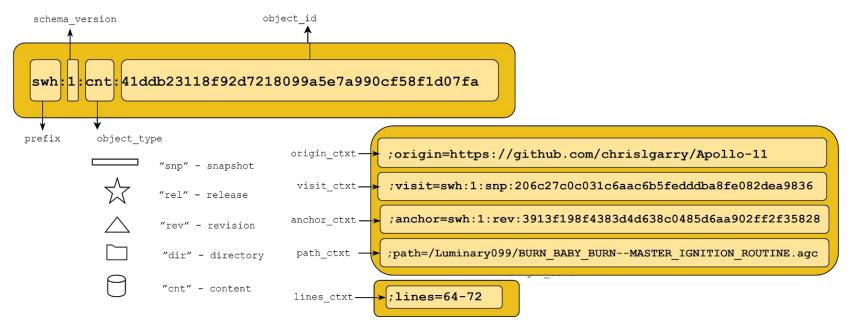

<

Bitbucket		git	R	@debian	4	GitHub	gitiles	🖊 GitLab
2,489,011 🗸	56,983 <	23,961 <	26,416 <	135,568 <	52,811 <	193,816,991 🗸	10,021 <	4,137,619 <
origins	origins	origins	origins	origins	origins	origins	origins	origins
∓∓∓ git	🔇 Gogs	GO		heptapod	🔅 launchpad	Maven⁻	विद्यम	
2,619 <	172 🗸	899,728 <	354 <	1,196 🔾	500,444 <	312,461 🗸	3,485,607 <	4,986 <
origins	origins	origins	origins	origins	origins	origins	origins	origins
	Packagist The PHP Package Repository	R PAGURE	Phabricator	nub.dev	Python Package Index		stagit	
	300,175 <	67,590 <	202 🗸	47,587 <	497,141 <	381,330 🗸	254 <	
	origins	origins	origins	origins	origins	origins	origins	
			On d	emand arc	:hival			
	🛞 eLife			HAL science auverte		IPOL Journal		
	12 origins	<		570 origins	<		193 origins	<
			Disco	ntinued ho	osting			
				Google code	{P}	Bitbucket		

790,026 origins

<

Harvest and archive



Current rate: 10 origins are visited per second

Reference (25 billion SWHIDs)

SoftWare Hash Identifiers (swhid.org)

Intrisic, decentralised, cryptographically strong

Why are we interested in querying SWH ?

- For empirical research in Software Engineering
 - Mining Software Repository community
- For building (reproducible) source code datasets
 - Benchmarks
 - Machine learning training dataset (LLM etc ...).
- For building refined datasets ie. extending the SWH model with metrics of interests
 - Adding extra metadata (labelization of vulnerable commits, code metrics, energy consumption)
 - At different level: origin, snapshot, commit, file (... and why not AST node in the future ?)

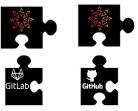
Forges do not provide appropriate tooling for large scale mining

Heterogeneous information sources with heterogeneous API

... At the end you will choose github

- Query Expressivity Limitation
- Rate Limitation
- Complex API

Why using Software Heritage ?


Traceability

Immutability

Uniformity

Multistakeholder infrastructure Intrinsic unique identifiers (SWHID) Append only model (except law requirement)

Uniform API

REST GraphQL API for tiny requests

- Navigate through the archive, node by node
- Request the download of files / commit / snapshots
- Limited to 10k requests by hour
- Request the archive of repository

Internal API - SWH storage

- Can access to the entirety of the archive (File etc ...)
- Query/traversal are performed on the production environment
- Backed by relational DB, non-adapted to resources intensive graph traversal

Need a separation of concerns, archiving / searching

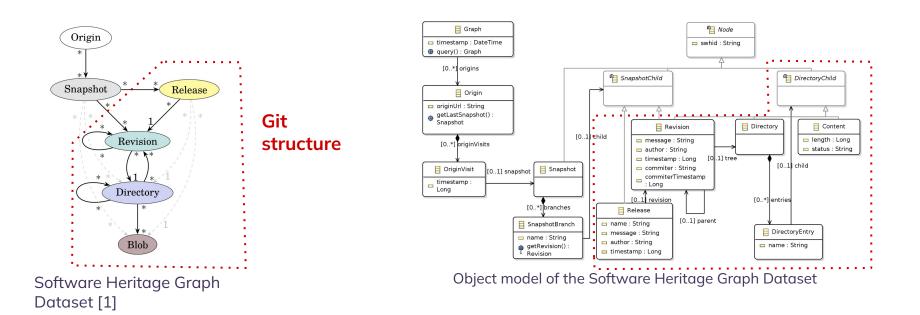
-

SWH - Search

- Independent
- Backed by elastic search

- Limited to origin search
- Accessible through web-api

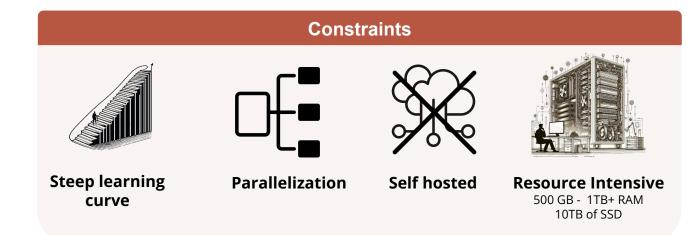
```
origin : plasma and language in [python] and visits >= 5
last_visit > 2021-01-01 or last_visit < 2020-01-01
visited = false and metadata : "kubernetes" or origin : "minikube"
keyword in ["orchestration", "kubectl"] and license in ["GPLv3+", "GPLv3"]
(origin : debian or visit_type = ["deb"]) and license in ["GPL-3"]</pre>
```


Not suitable for graph traversal request

The property Graph Dataset

- Provide a fully independent service to access graph metadata
- **Compress** the graph and perform request in its compressed version
- Can be used through different API : JAVA, REST, web-rpc -
- Provided as an external services

No API limitation in terms of expressivity

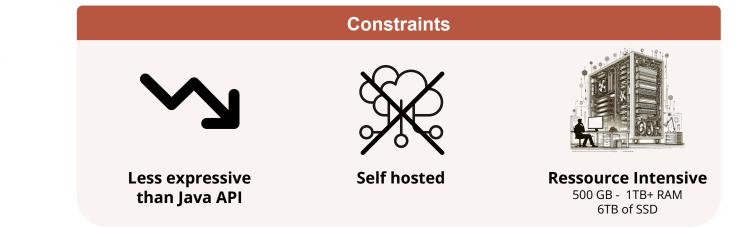

[1] Antoine Pietri. Organizing the graph of public software development for large-scale mining. Université Paris Cité, 2021.

Ë

SWH graph in practice - JAVA API

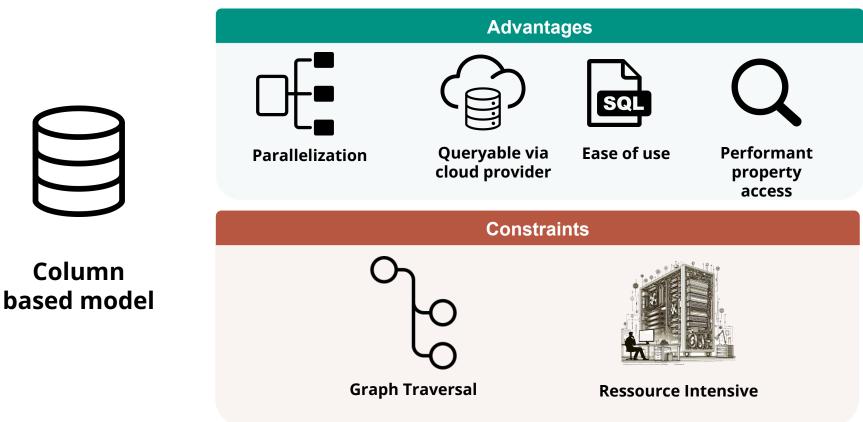
Advantages

- Expressivity : all queries can be designed
- Performant graph traversal
- Performant transitive closure

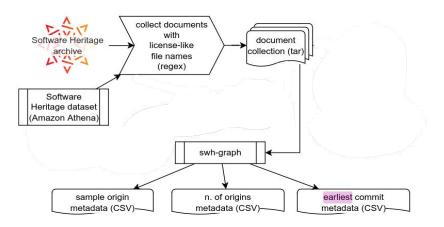


SWH graph in practice - gRPC API

Advantages

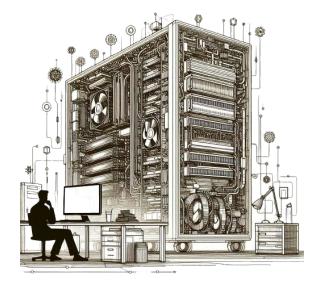

- Ease of use
- Provide high performance graph traversal method
 - returning node / edge properties
 - performing BFS traversals

- finding shortest paths
- common ancestors

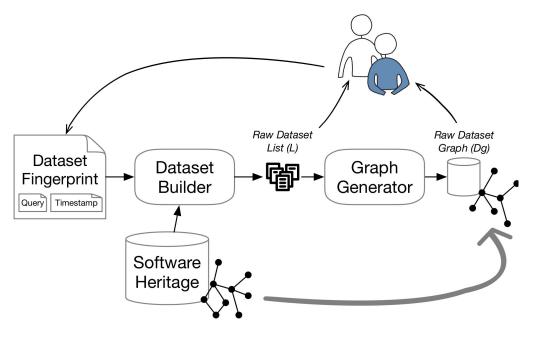

Column

SWH graph dataset - columnar export

Combining swh-graph + column based version


- Executing non optimized query on swh-graph can be costly
- 2-steps process, querying both SWH-graph and the column based version

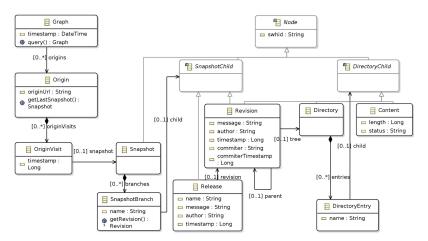
Example: Licence extraction (partial workflow)


Querying SWH is complicated

- Time consuming / difficult to learn how to deploy + run a query on SWH-graph
- Even with time, resources are needed
- A query language is needed :
 - Easy to use
 - Hide complex query between column based / compressed version

The fingerprint approach

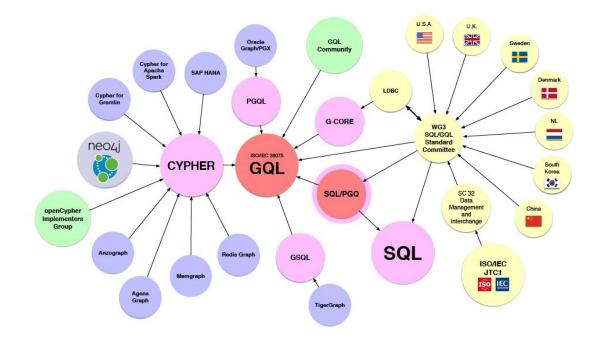
- 1) A query on the data model of the source code
- 2) A timestamp to freeze the state of the archive
- 3) A hash to prevent any corruption



Operationalization of our approach :

Fingerprint Query Specification

Q


Object Constraint Language (OCL)

Object model of the SWH Graph Dataset

Fingerprint query = constraint on the SWH Graph Dataset

Towards a graph query language

GQL examples

Given two arbitrary revisions, return the shortest path between them in the undirected graph if it exists.[1]

```
MATCH (a:Revision) WHERE a.swhid = "swh:1:abc123..."
WITH a
MATCH (b:Revision) WHERE b.swhid = "swh:1:def456..."
WITH a, b
MATCH p = shortestPath((a)-[*]-(b))
RETURN nodes(p)
```

Given an origin, return all the objects reachable from it, but not reachable from any other origin[1]

```
MATCH (repo:Origin) WHERE repo.url = "github.com/..."
WITH repo
MATCH (allother:Origin) WHERE allother.url <> "github.com/..."
```

Discussion

- Have you ever had the need to mine repositories? What were your requirements? Did you succeed without any problems ?
- Do you have any ideas of research questions that involve searching for information / mining SWH ?
- What would be the interesting properties of a query language? Any ideas on a particular syntax?

Thanks